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GAUSSIAN ARBITRARILY VARYING CHANNELS

1. INTRODUCTION

Consider the following communications channel (cf. Fig. 1). Once each second, the transmitter
chooses for transmission to the receiver an arbitrary real number, say ui at time i, such that the
sequence I u, ) satisfies a power constraint PT (to be made precise below). In transmission, this
number is corrupted in such a way that it is received as ui + nei + s,. The elements of the sequence
n*- I are independent, zero-mean Gaussian random variables, each having variance Ne. The

transmitter and the receiver have no knowledge of the sequence t s, }, other than that it satisfies a cer-
tain power constraint, say Pj (also to be made precise below). The sequence I s, ) may have arbitrary,
time-varying, possibly non-Gaussian statistics. The goal of the transmitter and receiver is to construct a
coding system to reliably convey discrete source data over this channel, knowing only Ne, PT, and Pj.

POWER < Pj

R POWER 4 PT

sNocHAs-nI HER ISTOATI
Lo BS~~ECORDER -DECODERl

| 1 1'~n N(O. Ne% )

I (CORRELATKO __

Fig. I - A Gaussian arbitrarily varying channel

We call the preceding model a Gaussian Arbitrarily Varying Channel (GAVC), since it is the con-
tinuous alphabet, Gaussian-noise-corrupted analog of the discrete, memoryless, Arbitrarily Varying
Channel (AVC), introduced by Blackwell, Breiman and Thomasian [11 (see also Wolfowitz [2,31). The
study of discrete, memoryless AVCs has generated a substantial body of literature; much of this is sum-
marized in Ref. 3, chapter 6.

By comparison, GAVCs have received considerably less attention. Blachman 14, 51, has obtained
upper and lower bounds on the capacity of a GAVC (using the maximum probability of error concept)
when the sequence I s, I is allowed to be chosen with foreknowledge of the transmitter's codeword.
Basar and Wu [61 have investigated the use of essentially the same channel, for a different source
transmission problem in which the source is a discrete-time, memoryless Gaussian source and reliability
is measured by mean-square distortion. Dobrushin [71 and later McEliece and Stark [81 have studied
what might be called a Gaussian compound channel [2,31 that is similar to the GAVC except that the
( s, ) is constrained to be a sequence of independent, identically distributed random variables.

The practical significance of the GAVC is seen as follows. One may view the sequence ( si ) as
selected by an intelligent and unpredictable adversary, namely the jammer, whose intent is to disrupt
the transmission of the sequence u Ui I as much as possible. The jammer, like the transmitter, is subject
to the natural constraint of finite power but is otherwise free to generate any signal he chooses.

Manuscript approved February 13, 1986.
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HUGHES AND NARAYAN

In this report, we study four GAVCs corresponding to two different types of power constraints
(peak and average) on the transmitted codeword and on the jamming sequence. Our main results are
coding theorems, one for each pair of constraints, characterizing the asymptotic reliability that can be
achieved by optimum random codes on these channels. We say "asymptotic reliability" rather than
capacity because, as we shall find, these channels generally have no capacity, per se.

2. DEFINITIONS AND RESULTS

A codeword of length n for the GAVC is a sequence of n real numbers selected by the
transmitter, say u = (ul, ... , un ). Similarly, a jamming sequence of length n, denoted by s =

(si, . .., s), is a sequence of n real numbers selected by the jammer. These sequences may be thought
of geometrically as points in n-dimensional Euclidean space ( R' ). With this interpretation, the output
of the GAVC corresponding to the codeword u and the jamming sequence s is

y = U + q * + s , (2.1)

where 1e* denotes an n-vector of independent, identically distributed (i.i.d.) N (0, Ne) random vari-
ables.t

An (n, M) block code, C,, is a systemf

C= { (ul, DI),. , (Um, DM) I, (2.2)

where I nui , are codewords of length n, and ( Di Ml are disjoint (Borel) subsets of RX, called decod-
ing sets. This code may be interpreted as a means of transmitting an integer message from the set
{1,..., M} to the receiver using the GAVC. To send the number I, i< M, the transmitter sends
the codeword ui. At the receiving end, if the received sequence y* lies in the set Di, the receiver
infers (perhaps incorrectly) that the transmitted message was i'; otherwise, if y* is exterior to each
decoding set, the receiver draws no conclusion about the transmitted message.

We are interested in the problem of transmitting the output of a given information source, gen-
erating R bits per second, over the GAVC with minimum error probability (to be defined). The goal
of the transmitter is to construct a block coding system of length n that suffers an error probability no
greater than this minimum, regardless of the jamming sequence s. The goal of the jammer is to inflict
the largest possible error probability on any code chosen by the transmitter by an appropriate choice of
s. For the transmitter, a strategy to accomplish this goal consists of an ( n, 2nR ) code; a strategy for
the jammer is a jamming sequence of length n.

We allow both transmitter and jammer the additional flexibility of being able to choose their
respective strategies randomly. Accordingly, we define an ( n , M ) random (block) code,

C= (uI, D*),., (u M, D*) I, (2.3)

to be an ( n, M ) code-valued random variable that satisfies the obvious measurability requirements. A
(random) jamming sequence of length n, with the obvious definition, is denoted by s *.

Clearly, if no further restrictions are imposed on the random codes and jamming sequences, the
problem has an uninteresting solution. The error probability of any fixed, positive rate, random code
can be made arbitrarily close to one by letting s* be memoryless, zero-mean, Gaussian noise of arbi-
trarily large variance (or power). In practice, however, there will be other restrictions that prevent such

tThroughout this report, except where otherwise indicated, asterisks are used as superscripts to denote random variables, bold
lower case letters indicate vectors (or vector-valued mappings) in R', and N (, (r2 ) denotes a Gaussian distribution with mean
ja and variance r2.
Mwe extend this definition to nonintegral M as follows: By an (n, M) code we mean an ( n, M') code where M' is the smallest

integer greater than or equal to M.
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NRL REPORT 8971

trivial solutions. An interesting and natural restriction to investigate is that of placing some kind of
power constraint on the codewords and the jamming sequences. In this report, we consider two types of
power constraints: peak and average. We say that C* satisfies a peak input power constraint (PI) if each
codeword lies on or within an n-dimensional sphere (n-sphere) of radius V/;6 almost surely (a.s.), i.e.,
if for each I < i < M, the codeword ur= ( ,..., ue I) satisfies

In
- Y U , 2< PT (a.s.). (2.4)n _=I

This code satisfies an average input power constraint (Al) if the expected power averaged over all code-
words is at most PT; i.e., if

El I M n di ~ P T, (2.5)

where E I . I denotes mathematical expectation. We also define two similar power constraints on the
random jamming sequence s*. We say that s* satisfies a peak jamming power constraint (PJ) if

lin
- a, sj'< PJ (a.s.) (2.6)
n j=

and an average jamming power constraint (AJ) if

E - ,sr2} PJi (2.7)
n l

There are two input power constraints (PI or Al) and two jamming power constraints (PJ or AJ),
and so there are four possible combinations of transmitter and jammer power constraints to consider.
We adopt a simple binary nomenclature to describe each case. In the sequel, when we speak of the
GAVC A I B, we mean the GAVC with input power constraint A (= PI or Al), and jamming power
constraint B (= PJ or AJ).

We now specify what is meant by the "error probability" of the code C'. Given a code C* on the
GAVC A I B and the jamming sequence s , we can in principle calculate the (maximum) probability of
error:

X ( C, s) max Pr ( u i + q e + s EbD (2.8)

where D*' denotes R' - D7. However, s* is not known in advance to the transmitter and may change
from one block to the next in an unpredictable and arbitrary way, subject only to the power constraint
B. The smallest error probability guaranteed to be achievable by the code C* is the supremum of Eq.
(2.8) over all B-admissible s*. Therefore we define the error probability of the code C* by

XAP (C ) = sup X ( C*s* ); (2.9)
S.

where the supremuni is performed over all B-admissible s*.

3



HUGHES AND NARAYAN

We now ask: For a given source rate R and constraint pair A I B, what is the smallest error
probability, XB ( C, ), that can be achieved by any ( n, M ) random code C* that satisfies constraint A,
when M > 2nR and n is large? Clearly this error probability depends on both the rate R and the con-
straints A | B. Accordingly, we say that a pair (R, X ), where R > 0 and 0 < X < 1, is achievable for
the case A l B (achievable A I B) if for all E > 0 there exists, for all n sufficiently large, an (n, M) ran-
dom code C* satisfying constraint A, so that

log2 M > n (R - E) (2.10)

and

XB ( C*# :X + E * (2.11)

Let RA I B denote the set of all achievable pairs (R ,X) for the GAVC A I B.

Note that if a certain pair (R A) is achievable A B, then all pairs (R',X'), such that
R < R and X' > X, are also achievable A | B. Consequently, RA I B must be of the form

RA IB = ( (R X) 0 < R < CA I B(),O A < I1} (2.12)

where CA IB (A) is a monotone increasing function of X. Thus, to characterize RA I B it suffices to
determine CA I B (X) .

The function CA I B (X) is called the X-capacity of the channel (cf. Csiszir and Korner [3] and Wol-
fowitz [2]). It can be interpreted as the largest rate of transmission that can be achieved by a code with
error probability no greater than X, for large n. If CA I B (X) is equal to a constant on 0 < X < 1, say
CA I B, the latter is called the capacity of the channel; otherwise, if CA I B (X) is not constant, we say that
no capacity exists.t Most simple channel models that arise in information theory have a capacity. In
this report, we show that certain GAVCs generally have no capacity; i.e., CA LB (X) is not constant. This
interesting and somewhat surprising fact distinguishes GAVCs from discrete AVCs: Blackwell, Breiman,
and Thomasian [1] have shown that the latter always possess a (random coding) capacity.

Recall that our objective is to determine the minimum error probability suffered by large block-
length random codes of rate R when used on the GAVC A I B. Define this error probability by

XA I B (R) limsup inf AB (C) Q (2.13)n C- Cn

where the infimum is over all A-admissible (n, 2 nR) random codes. It is easy to see that the relation-
ship between XA I B ( R ) and CA I B (X) is

XAIB (R ) = min (0 < XA 1 I CAIB (X) > R or X = 1). (2.14)

Although it clearly provides the same information about RA I B that CA I B (X) does, XA I B ( R ) is often
easier to interpret.

We now present four theorems that characterize CA I B (X) for each pair of constraints A I B, the
proofs of which are provided in the next section. We first consider the case in which both transmitter
and jammer are constrained in peak power, i.e., the GAVC PI I PJ. This channel actually has a capacity
that is given by the following familiar formula.

tAn alternative (e.g. Csiszar and K6rner [31) definition of capacity (which always exists) is

CAIB lim CAIB(A).

Our definition is that of Wolfowitz [2].

4
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Theorem 1: For the GAVC PI I PJ, a (random coding) capacity exists and is given by >-

Cp,,1 , (A) = Cm I Pi = 21 og2 1 + +P| (2.15)

for all 0 < A < 1.

Remark: Blachman ( [41, p. 53, Eq. 10) states (without proof) a similar result.

It is interesting to note that Cp, I pj is identical to the capacity formula of the memoryless, Gaus-
sian channel that would be formed if the jammer transmitted a sequence of i.i.d. N (0,Pj) random vari-
ables (eg. Wolfowitz [2], Theorem 9.2.1).t* We conclude, for the GAVC PI I PJ, that an intelligent
jammer, regardless of how he distributes his power, can do no more harm (in the sense of reducing the
achievable region) than Gaussian noise of the same power.

We now change the jamming power constraint from PJ to AJ (i.e., GAVC Pi I AJ) and ask
whether the above conclusion is still valid. Since bounds on average power are weaker than those on
peak power, it is obvious that Rp/IAJ is a subset of Rp/IPj. However, as the next theorem demon-
strates, this inclusion is strict. In fact, we find, for this and all remaining cases in which either
transmitter or jammer or both are subject to average power constraints, that no capacity exists, i.e., only
X-capacities are found.

Theorem 2: For the GAVC with constraints PI I AJ the (random coding) A-capacity is

CP1IAJ(X) = 1 92 21 N+ Pj/T J (2.16)

for all 0 < A < 1.

Remark CP1 I AJ (0) is interpreted as 0.

Observe that the expression for CP1 IAl (A) is identical to that of Cp/ I pj except that the jamming
power appears boosted by a factor that is the reciprocal of the tolerable error probability, A. Some
insight into this formula can be gained by stating the result in terms of the error probability suffered by
codes of rate R. Theorem 2 states that, for increasing n, optimal (n, 2 nR) random codes satisfying PI
suffer an error probability that approaches

f (R - 1) Pi
API IAJ(R) PT - (4 R 1)Ne R < CPIIAJ (1)

1, R < CpIAJ(1) (2.17)

against an AJ-constrained jammer.

The function API I AJ (R) is increasing, positive whenever R is positive, and for small R becomes
asymptotic to 2 In 2 R PJ / PT. The region RP/, IAJ is sketched in Fig. 2. Apparently, a code can
achieve high reliability (i.e., AAJ (C*) = 0) only in the limit as R or PJ/PT become vanishingly small.
Evidently, reliable communication is impossible at any positive source rate.

tIt is also the formula obtained by Dobrushin [7] for the capacity of the Gaussian compound channel.
tNote that this Gaussian jamming sequence does not satisfy PJ. It is possible, however, to construct a jamming sequence that
does satisfy PJ and that yields nearly the same capacity (cf. proof of Theorem 2).

5
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0
° CPI I Pi

R -

Fig. 2 - The achievable regions for GAVC PI I PJ
and PI I AJ

We now sketch the basic idea behind Eq. (2.17) (or equivalently, Theorem 2); a detailed proof
follows in Section 3. Let C* be any PI-admissible random code of rate R. Suppose the jammer
transmits only jamming sequences s* consisting of i.i.d. sequences of N (0,P*) random variables,
where P* is a nonnegative random variable that satisfies EP* < PJ, so that s* satisfies AJ. (Clearly,
this restriction can only increase the achievable region.) With this restriction, the channel "seen" by the
transmitter is a discrete-time, Gaussian channel with (unknown) noise power Ne + P*. According to
the coding theorem and strong converse for this channel (e.g. Wolfowitz [21, Theorems 9.2.1-2), if

R < log1 1 + Ne 4 p

and n is large, then AAJ ( C*) 0 is possible; however, if

R > 2 1092 1 + N PT Rjo2 {1+N + P*l

then AAJ (nC) 1 is certain. The jammer must therefore choose

( 4R- I ) N

to be guaranteed an appreciable error probability, and this power is sufficient to yield an error probabil-
ity of unity. Therefore, the best codes have error probability that approximates the probability of this
event

AJ ( C* Pr I P*_ PT - N)

Finally, the right-hand expression above takes on a maximum value of API IAJ(R) when P* is chosen
so that

Pr P* (R T) -Ne = 1-Pr I P = o0= AI AJ (R) .

It follows that AAJ (Cn) is not less than API I Al (R) for large n.

6
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Although we have allowed the jammer foreknowledge of the statistics of the transmitter's random
code when selecting a jamming sequence (cf. Eq. (2.9)), it turns out that this knowledge is unneces-
sary. Remarkably, the jamming sequence above does not depend on the detailed structure of the code,
but only on the blocklength n, the source rate R, and the parameters PT , PI., and N,. Also interesting
is that this jamming sequence is essentially a pulsed strategy (i.e., either "off" or "on" with high peak
power). Memoryless, pulsed jamming sequences have been shown to maximize the error probability of
certain uncoded modulation systems, such as BPSK (e.g. Simon et al. [9]). Theorem 2 shows that
pulsed jamming sequences with memory play a similar role for random block codes on the GAVC.

We have seen from Theorem 2 that an average-power-limited jammer has a tremendous advan-
tage against a peak-power-limited transmitter; in fact, reliable communication is impossible in this case.
It is interesting to turn the tables and ask whether the transmitter might similarly gain by varying code-
word power against a peak-power-limited jammer, as in the case AI I PJ. The next theorem shows that
little advantage will be gained.

Theorem 3: For the GAVC with constraints Al I PJ, the (random coding) A-capacity is

CA/ I,. (A) = 2 log2
I+ PT/(l-A)

N, + P., 

for all 0 < A < 1.

The corresponding achievable region is sketched in Fig. 3. We see that if a high error probability
can be tolerated, the allowable coding rate is much improved; however, at low error probabilities
CAI l pI (A) approaches Cp, I pj, and the improvements are negligible. As in the other cases, we can state
the result in terms of error probabilities: Optimal Al-admissible (n,2nR) random codes suffer an error
probability that, for large n, approaches

0, R < CAII pj(O)
(2.19)AAIIPJ (R) = | -

(4 R - 1) (N, + P.) CAI I PJ (0) .

Thus the rates at which reliable communication can occur are the same as the case PI I PJ. Clearly,
codeword power variation offers little improvement to the transmitter.

I
X

0
0

i e A I.,
.Fig. .3-Tile a~chievalble region for GiAVC Al I PJ

7

(2.18)
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We now consider the GAVC Al I AJ. As Theorem 3 shows, the additional flexibility offered by
the power constraint Al is relatively useless against a peak-power-limited jammer. We now ask if the
transmitter might at least reduce the gain of the average-power-limited jammer compared with the
GAVC PI AJ. The next theorem shows that some limited improvement is made.

Theorem 4: For the GAVC with constraints Al I AJ the (random coding) A-capacity, for Ne > 0, is
given by

CAIIAAJ (A) =

1 109- log2 :
2 1

1 19

2 

I1+ Ne PT JNe + P. /2A II

I + PT ( - 2Ac) 1
( -1A) Ne J

0 < A < AX

(2.20a)

, I < A < 1

Ac 2I e I4727I + Ne

and in the case Ne = 0 by

CAI IA (A) =

1

2

1

2

1og2 | 1 + p |, 0 < A < I
I pi IJ 2

log2 1 I (-APT I | 2
1+2(1-AX)P piI 2

Remark Equation (2.20a) tends continuously to Eq. (2.20b) as Ne 0.

The corresponding achievable region is sketched in Fig. 4, with Cp/ I PJ, CP, IAJ (A), and CAI I PJ (A)
included for comparison. Optimal (n, 2 nR) random codes satisfying Al must then, as n grows large,
suffer an error probability that approaches

pI (4R - 1)
2(PT - (4R - I)Ne)

AAIIAJ (R) = PT (I - 2Ac)
(4R - 1) Ne

(2.2 1a)

R < CAI I AJ (A0)

R > CAI IAJ (XI)

when Ne > 0, and

AA/ I AJ (R) =

R <, 21092 1 1+ PT

-, R > 2 1092 1+ PT
2 1 ~~~P.,

when Ne = 0.

For R < CAI I AJ (A0), observe that the error probability is half of that of GAVC PI I AJ; however,
when R > CAIIA.J (AX) the probability of being correct (= I - AAJ (C*n) ) is (1 - 2A ) of that in the
case Al I PJ. CAIIAJ (A) is therefore a compromise between CPIIAJ (A) and CAIpJ (A). As in the case
P1 AJ, the error probability can be made small only by making R or PJ / PT small.

8
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c I-

r,
14t

?n.1

rr,
t: :;

I

A

CPjIi

R -

Fig. 4 - The achievable region for GAVC Al I AJ (with
all other A-capacities included for comparison)

An intuitive justification of Eq. (2.21a) is given here (a rigorous proof is given in Section 3).
Suppose, as before, the jammer transmits only i.i.d. sequences of N (0, P*) random variables, say s,
where P2* is a nonnegative random variable that satisfies EP2* < Pj._The transmitter constructs a ran-

dom code C* in the following way: He first selects a random code Ca of rate R whose average power
is no greater than unity, i.e.,

E M n 2

E nM £ I i 1,

and then, to form C', he multiplies each codeword in Ca by / where P* is an independent nonne-
gative random variable satisfying EPt ( PT. The performance of this code against s* is a function of
the signal-to-noise ratio P*! (P* + Ne). As in the earlier argument following Theorem 2, if

P- + Ne

then A (C*, s #) can be small; however, if

P* + Ne

then it is certainly true that A ( C*, s) 1. Therefore, for the best choice of CZn, we have for large n

A (Cn,s*) : Pr I P* < (4R - 1) (P*+ Ne) ). (2.22)

The optimum error probability thus depends only on the power distribution of the transmitter and jam-
mer. Naturally, the transmitter wants to minimize Eq. (2.22) with an appropriate choice of Pt, and the
jammer wants to maximize it by an effective choice of P2*. Therefore, an optimal code suffers the error
probability

AAJ (Ct) max min
PI:EPl _< PT P2:EPI < Pj

Pr {I P < (4R -1) (P±*+ Ne ).

It can be shown (cf. proof of Theorem 4) that the right-hand side of this equation is equal to
sAAIAJ (R).

9



HUGHES AND NARAYAN

Finally, consider the coding problems that result from the imposition of multiple constraints. Sup-
pose our code must satisfy some constraint, say A, for some constant PT, and another constraint A' for
some constant P ;• PT. Denote this joint constraint by AA'. Similarly, one may define a double con-
straint, BB', on jamming vectors. It is easily checked that the achievable regions for these more com-
plex coding problems can be constructed from the regions defined by Theorems I to 4 according to the
following simple rules:t

RAA'1B = RA IB n RA'|B (2.23a)

RA BB- RA l B U RA I BW, (2.23b)

or, in terms of A-capacities:

CAA'IB (A) = min ( CA lB (A), CA' B (A) ) (2.24a)

CA I BB'(A) = max ( CA I B (A), CA BI (A)B . (2.24b)

3. THE PROOFS OF THEOREMS 1 TO 4:

For any input power constraint A, and jamming power constraint B, define the region

RAlB A ( (R ,A) 0 < R < CA I B (A), 0 < A < I },

where CA I B (A) is the formula given in the theorem of Section 2 corresponding to the constraints A | B.
Our goal in this section is to prove that

RA 1B = RA IB 

for each pair of constraints A I B. Each proof will consist of two parts: a forward part

(a): RA I B D RAI B.

and a strong converse

(b): RA I B C RA I B

At this point, it is convenient to present some definitions and results that we use in the proofs
below. By the standard (n, M) random code, we mean a random code

C*" - I (ve* A* 1 ), . . ., (V*M, A*M ) ) (3.1)

constructed in the following way.
(1) The M random codewords, (vl,...,v*), are a collection of mutually independent,
random n-vectors, each of which is uniformly distributed on the n-sphere of radius I-n/;
i.e., the probability that v, lies within a certain region on the surface of this n-sphere is
proportional to the surface area (or equivalently, solid angle) of this region.
(2) The random decoding sets, Ar*)/M=' I, are defined by a strict minimum Euclidean distance
rule, viz.,

Ai o t y r RA yV,| < y-v for all kcani, I < k < M s dc(3.2)

t It is unknown whether the region RAAF J BB' can be similarly decomposed.

10
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where I I denotes the usual Euclidian norm on R'. If a tie occurs, the receiver draws no r-
conclusion about the transmitted message (and hence an error occurs) .t

We make several observations about the random code, Ce. First, the codewords of Ce are clearly
P1-admissible for PT = 1; in fact, Eq. (2.4) is satisfied with equality (with probability one). Second,

since all codewords have equal length (or power), each decoding set in Eq. (3.2) is a "flat-sided" cone Go.
with vertex at the origin. It follows that the sets (AI),M I are also minimum distance decoding sets for
every codeword set of the form (-F v t,...,- v4), where P > 0. Third, Shannon [10] has con-
sidered the use of this random code on the discrete-time, additive Gaussian noise channel and has
obtained the following result: There exists functions, say K (R,P) and (R,P), both positive so long as

R -- 10g 2M < -1 og2 (I + P), (3.3)
n 2

such thatt

Pr IrP Vv-j+ E7 A < K (R,P) exp I(-nE (R,P) )(3.4)

holds for all I A i < M and n Ž 1, where, here and throughout this section, 7 denotes a vector of
i.i.d. N (0,1) random variables. Furthermore, K (R, P) and E (R,P) can be selected so that

(a) K ( ,P), -E ( ,P) are increasing, and (3.5a)

(b) K (R, -),-E (R , ) are decreasing (3.5b)

for all R and P satisfying Eq. (3.3). Finally, Ci# has the useful properties summarized in the following
lemma whose proof is contained in Appendix A.

Lemma 1: Let Ci# be the standard random code ( Eq. (3.1)); let s be any n-vector, and let I and ? be
any pair of real numbers satisfying I > I > 0. Let w * be a random variable that is uniformly dis-
tributed on the unit n-sphere, and that is independent of the codewords (vt,. v 1). Then

(a)Pr (v + + s E At=Pr(v +71e + Is* EA),

(b)Pr (vt+ 4+ iw* E Atl < Pr(vt+e + It* EAt).

Remark: Lemma 1, part (a) states that Pr ( v + 71 + s E At) depends only on the magnitude of s, and
not on its orientation; part (b) implies that it is an increasing function of this magnitude.

A second useful lemma is given below; its proof is contained in Appendix B.

Lemma 2: Let ('1"'= I be a sequence of i.i.d. random variables with common marginal distribution N
(0,1). Then for all 0 < E < 1,

(a): PrI I S B2 - e < exp |- fE }
t We note that the decoding sets {A, M I may be suboptimal (in the minimax sense) decision regions for the loss functions

XPJ (Cn) and AAJ ((e`). For proving coding theorems this will not matter: in the forward part of the proofs we can certainly
bound the error probability of the optimal decoders above by that obtained using suboptimal decoding sets; in the converse part,
we can bound the worst-case error probability below by that obtained using (block) pulsed, Gaussian jamming signals, for which

the sets, (Ai Im 1, are a uniformly most powerful decision rule.

f We have presented Shannon's result in a form that is different from the original statement in Ref. 10, but which is convenient
for the proois of' the present section. Our form can be obtained from Shannon's "iirm" upper bound in Rfr. 10 by making the
substitution indicated in the footnote to page 16 of Gallager [I II and simplifying the resulting bound.

I1I
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for all n > no(E), where no (e) is a bounded function of E alone, andt

(b r|I A,7j2 > I | Pr (z2 > I >i

for all n > 1.

We also require an Arimoto-style strong converse [12] for the discrete-time, additive Gaussian
noise channel with peak input power constraint and the average probability of error concept. Let

C*#- (ul D* ), * ( * *,( , D* 

be any PI-admissible (n, M) random code with PT = P. There exist functions, say K'(R, P) and
E' (R, P), which are both positive whenever

R - log 2 M > -log2 (1 + P) (3.6)
n 2

such that
IM

1 I Pr(u +7 EDi#} 1-K'(RP)exp -nE'(R,P)1 (3.7)

holds for all n > 1. (Note that any lower bound on the average error probability is a fortiori a lower
bound to the maximum probability of error.) Furthermore, K' (R, P) and E' (R, P) can be selected
so that

(a) K' (-,P), -E' (-,P) are increasing, and (3.8a)

(b) K' (R ,.), -E' (R. ) are decreasing (3.8b)

for all R and P that satisfy Eq. (3.6). The proof of this result is very similar to the derivation in Sec-
tion VI of Ref. 10; we therefore omit it.

We now present a Lemma that forms the kernel of the strong converses to Theorems 3 and 4.
This Lemma is of independent interest because it gives a tight lower bound on the average error proba-
bility of any code when used on a Gaussian channel in terms of the code's power distribution.

Define for any u = (ut, . . ., un) E R' the quantity
in

P (U) _ ,U.? (3.9)n * 

and for any random code C*, let U* (C*) be the random variable that is uniformly distributed on the
set ( u , .. ,u of codewords of C*.

Lemma 3: Let C* be any (n, M) random code and J* be any nonnegative random variable that is
independent of Cn, Then for all E > 0 the following holds:

I MI I, Pr ( u * + + J1*q * E}
> Pr ( P (U(Cn*)) < ( 4R 2- E- I )(Ne +j* ) n (E) (3.10)

tBy the Central Limit Theorem, the left-most expression in Lemma 2(b) approximates 1/2 for large n.

12
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C;

where rC-

yn (e)- ' ( R-, 4R -2f-I )exp -nE' ( R -fE 4R -2eI -2-n (3.11) !
F-;

Remarks: Observe that y, (E) depends only on n, e, and R and is independent of the random code and r
the jamming power. Also, for all E > 0, y,, (E) - 0 exponentially fast.

Proof of Lemma 3: To prove the lemma, fix e > 0, and let C,, (u 1, D), ... , (uM, DM) be any
realization of C*. Define the set

S, (C,,,J) (1 M i • M I P (ui) < ( 4 R - 21- 1) (Ne + J)), (3.12)

and further definet

N, (CnJ) -#SIE (CnzIJ)' (3.13)

It is immediate that

E ( Nf (C-,J*) = M Pr IP (U*(C*)) < (4R - 2E -1) (Ne + J ) } (3.14)

The average error probability of that subcode of C, that consists of those codewords with indexes in
Sf ( C,,J) can be bounded below by the strong converse (cf. Eq. (3.7) ) for the Gaussian channel t

1 X, ~~Pr I u j + ?7* + 1~ 7 q* E D * C*n = Cn }
N, (Cf,J)iE(,J) I e EDI C=C, 

f Es Sf S(C,,,J)

> 1-K' (R,,4R- 2E _-1) exp ( nE' (R,,,4R-' 2 -1) (3.15)

provided that

R _ 1og2 (N, (C,,J)) > R - 2E. (3.16)
n

In particular, the following holds for all C, J, e, and R: §

N I(CJ) iPEs r J) P u + 71e + 7* E ij* I C* = C, }

> ( 1 - K' ( R, 4R- 2E _ 1 ) exp -nE' (Rn, 4R 2- 1)- I }(RnIR,, lR_.)(R.)

( I -Bn (R ,e ) ) llRn [RR-.E)(Rn) * (3.17)

where

Bn (R e) K' (R -e, 4R I2 - )exp -nE' (R -E, 4R-2e_ 1)}.

t The quantity #A denotes the cardinality of the set A .
t We interpret the left-hand expression in Eq. (3.15) as zero if (C.,J) = 0.

I xEA
§lA (X) _Ox EAi.

13
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The last step above is a consequence of Eqs. (3.16) and (3.8a). Using Eq. (3.17), we obtain the desired
lower bound to the average error probability of C,,:

1 M

Mr E u + D+ rCn = C,, }

> - X, Prtuj#+I e IW71 (D~Cn =C
M iNES,(C,J)

I> N, (CnJ) (I -Bn (R, E)) 'RI Rnl>-R k-d (Rn)

M
N, (CnJ) _N, (CnJ) Bn (R. e) I JR, I Rn >- R -,) (Rn)

> N(CJ) -B, (R e -

_ N, (CnJ)

- N((C,,,J) (3.18)

Averaging Eq. (3.18) over the distributions of C*n and J* and using Eq. (3.14), we obtain Eq. (3.10),
completing the proof.

Proof of Theorem 1:

(a): Rp, jpj :) ftpi IPi

Let R, nonnegative, be given and set M, = [2nRJ. t Define a sequence of (n, M,) random codes, say
(C'JnLi, in the following way:

C= ( uAl),., (U ,A*) } , (3.19)

where u t = /4 v", and I (v, A (vt, A ) I is the standard (n, M,) random code, defined in

Eq. (3.1). It is easily verified that C*n satisfies PI for each n > 1. We further claim that if

R < Cp l PJ (3.20)

then there is a positive sequence I v, y,=t such that

Xp-, (cn*) < 'Y' (3.21)

andy, - 0 as n - + co. If true, this would clearly imply that any R,X) in IJ is achievable Pi I PJ,
and thus prove (a).

fix] denotes the integer such that x- I < n x.

14
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To establish this claim, suppose that Eq. (3.20) is true; let w * be an independent random variable
that is uniformly distributed on the unit n-sphere and define

crn(l) Pr I u j* + 7 * + la) * E A 'r} (3.22)

for any real number I > 0. (Clearly, a-n (0) does not depend on i.) Let s* be any jamming sequence
that satisfies PJ; i.e., I s I < v1/7 i, with probability one. The error probability incurred by s* can be
bounded in the following way:

(a) (b)
Pr [ u *+ Be* + s* E A--= Ean ( Is* I ) •< on (-Vrn~i) (3.23)

The justification of these steps is as follows: (a) is a consequence of Lemma 1 (a) and the definition of
u *; (b) results from PJ and Lemma 1 (b). Taking the supremum of Eq. (3.23) over all
I < i < M and s * satisfying PJ, we obtain the bound

XPJ (Cn) < arn (.JIrjj) (3.24)

It only remains to estimate the right-hand expression in Eq. (3.24); this is easily done by relating it to
the error probability for the ordinary Gaussian channel. Let A/471* denote a vector of i.i.d. N(O,Pj)
random variables, and let f (0) denote the probability density function of the random variable
m * Ti | 71 It is easy to show that

Pr {u *+7* +V /t7, * e E*= f oI)f(l)dl. (3.25)

Using Lemma I (b) again, we find

srn() < ,( ; < ~~~Pr u *j + 71 e + rT, E A-*, I3.6
an (VnfJjf (l dlPr I.,I*I1)(3.26)

We now invoke Eq. (3.4) (compare Eqs. (3.20) and (3.3)) to bound the numerator of Eq. (3.26) by

K (R,P 1 ) exp I -nE (R ,PI) 1 (3.27)

where

Pb - N + P. / b (3.28)

for all b > 0. From Lemma 2(b), we know that the denominator of Eq. (3.26) is not less than 1/4;
therefore, combining Eqs. (3.26) and (3.24), we conclude that

XPJ (C*) < 4 K (R,P 1 ) exp I-nE (R,PI) 1 (3.29)

for all n > 1. The right-hand side tends to zero as n - +oo, as desired. This completes the proof of
the forward part of Theorem 1.

(b):Rp, I pj C IIpj

15 '
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Let E > 0, and suppose that R > CpI pj + E. We claim that there exists a positive sequence lyn),n I
such that

XPJ (Cn*) >1 I - Yn (3'30)

is satisfied for all P1-admissible (nM) random codes, C*, where R (1/n) 10g2 M, and
yn- 0 as n +. Clearly, (b) follows from Eq. (3.30).

To prove the claim, fix e > 0 and take 8 > 0 small enough so that

CPI pi < 2 log2 |1 + N + P/(1+8) I < CpI pj + E < R , (3.31)

and let C* = 1(u*, D*). (u ,D*) be any (n, M) random code satisfying PI. If the jamming
sequence s * were i.i.d. N (0,Pj/( I + 8)) random variables, then by Eq. (3.7) we know that

max Pr{ u I+ he* + %FPj/(1 + 8)i *D E
I < i ( M I 

> 1 - K' (R,P1+8) exp (-nE' (R,P1+8 ) 1 (3.32)

where P(.) is as defined in Eq. (3.28). Unfortunately, |P~j(1 + 8) q* does not satisfy PJ; therefore,
we define a truncated noise process i7 *(8) as follows:

|IPJ I(1 + 8)1* 1*1 < n + )(333)

I J 71*~~ 17*1 >, In (I + ~8),

so that qr*(8) is clearly admissible under PJ. Now

Pr I u* + e* + P/Pj (1 +8h 1 * ED7

=Pr U* + + a*PJ/ (1 + * |*< In (l+ a) x Pr {n 1* (1+ 8)

+ Pr {u * + 7 + PJ/(1 + Z),1* |IX *I > n(1 + ) ) X Pr I I71* > In (1 + a8)

( Pr I u + 7 e* + 71 * (8) E Dj* + Pr { I X* I > In (1 + 8) 1 . (3.34)

From Lemma 2(a), the right-most expression in Eq. (3.34) is bounded above by exp {-n 82/12) for
all n >, no(8). Taking the maximum of Eq. (3.34) over all i and substituting Eq. (3.32), we conclude
that

XPJ (C*) > max Pr ( u++ h+ 7(8E) E (3.35)

> 1-K' (R,Pi+8) exp n-nE' (R,P1+8) 1 -exp n- -2 821.
12

for all n >Ž no(8) and all 8 satisfying Eq. (3.31). The right-hand expression in Eq. (3.35) tends to unity
as n increases uniformly over all codes of rate R, which is the desired result. This completes the proof
of the strong converse to Theorem 1.

16
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Proof of Theorem 2:

(a): RPIIAJ D IRpIAJ

We retain the notation and results of part (a) of the proof of Theorem 1. Let R, nonnegative, be
given, set MA, 1=[2 RI , and let {C*} I be the sequence of PI-admissible (n,M,) random codes intro-
duced in Eq. (3.19). We claim that there exists a positive sequence [(nyn^= I so that

XAJ (C*) < PI IAJ (B) + y (3.36)

and vYn - 0; this implies (a).

To prove Eq. (3.36), let s* be any jamming sequence that satisfies AJ and let X be such that
0 < X < 1. As demonstrated in part (a) of the proof of Theorem 1 (cf. Eq. (3.29)), if

1 < 102 | 1 + +P CP1 I AJ ( X2 <- N + Pj/X I =CpII J( , (3.37)

then for each 1 < i < M,,

Pr I Uj + e* + s*

< 4 K (R P)O exp ( -nE (R, P) , (3.38)

where P(.) is defined in Eq. (3.28). Since s* satisfies AJ, Chebyshev's inequality (e.g. Ref. 13 ) yields

Pr |- X s?2 > pj/ | ( A. (3.39)

Using Eqs. (3.38) and (3.39), we can bound above the error probability incurred by any s* satisfying
AJ in the following way: For any X such that Eq. (3.37) holds, we have

Pr uj*+ he* + s* E Aj*l

= Pr u| :-+ be* + s' EA A - F s*1 < Pi/A r ( II ' I' I n i=1 In i (n, I

+ PrI uj+ * + S Aj - I S*j < P/P | Pr |- I

< A + 4 K (RPA) exp t-nE (RPA) 1.

Let {xn,,°= I be any positive sequence such that An > APIIAJ (R) (so that
An - XPIIAJ (R) slowly enough so that

K (RPA ) exp I -nE (R,Pxn) ) - 0.

S*2 < pi/A J
S*i2 > P1 A }

(3.40)

Eq. (3.37) holds) and

(3.41)

Clearly, such a sequence exists. Taking the supremum of Eq. (3.40) over all i and AJ-admissible s*
and substituting A,,, we then conclude that

XAJ (Cn*) < X, + 4K (R,Px\) exp {-nE (RPAP) ). (3.42)

17
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The right-hand side of Eq. (3.42) tends to XPIIA. (R) as n increases, proving Eq. (3.36) and (a). This
concludes the proof of the forward part of Theorem 2.

(b): Rp I AJ C ReP I AJ

We now prove that there exists a positive sequence {'yj},n= I so that y,, - 0 as n- o and

XAJ (Cn) n APIIAJ (R) - In (3.43)

is satisfied for all PI-admissible (nM) random codes, where R -(1/n) 10g2 M; (b) follows from Eq.
(3.43).

First, let A be such that 0 < A < 1. Suppose that a "pulsed" jamming sequence, say s *, is
defined to be

SA - J'i7Z* X* (3.44)

where 71* is a n-vector of i.i.d. N (0,1) random variables, and Z* is a Bernoulli random variable that is
independent of 7 * and distributed as follows:

Pr {ZA = 1) = 1 - Pr (Z* = 0) = A. (3.45)

It is easy to verify that s * satisfies AJ for all 0 < X < 1 and all nt 1.

Suppose now that A is such that

R > ilog 2 1 + N+P/A =CP I AJ (A) (3.46)

then the error probability of C*n can be bounded below in the following way:

(a)
AAJ(Cn) _ max Pr u + I e + s e

(b)
> max Pr u + 71e + seD| Z= 1 Pr I Z* 1I

(c)
=X ( max Pr u + 7 * + V h1 # e Dk E )I < i ( Me
(d)
> A ( 1- K' (R,PA) exp I -nE' (RP\) 1), (3.47)

where P(.) is defined in Eq. (3.28). These steps are justified in the following way: (a) is an immediate
consequence of the definition of AAJ() ; (b) follows from the law of total probability; (c) follows from
Eqs. (3.44) and (3.45); and (d) is a consequence of Eqs. (3.46) and (3.7).

Let (Q I be any positive sequence such that A, < APIIAJ(R) (so that Eq. (3.46) is satisfied)
and A,, APItAJ (R) slowly enough so that

K' (RPA ) exp -nE' (R,PA,) 0.

18
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Substitution of A, into Eq. (3.47) yields

A (C*) > An, ( 1 - K1 (R,A,,) exp I - nE,(R,A ) 1)

= XPI IAJ (R) - En .

C :

ret

(3.48) ?4

rF

where {Yn), = I has the desired properties. This completes the proof of the strong converse to Theorem
2.

Proof of Theorem 3:

(a): RAI I pJ D RAI I PJ

Let R, nonnegative, be given and set M,, = 12 RI. For any 0 < A < 1, define a sequence of
(n,M,) random codes, say 1C,(A)),= 1. in the following way:

(3.49)

where

(3.50)

Z1-A is a Bernoulli random variable independent of v #such that

Pr IZ*Lx = 1) = 1 - Pr (Z. -A = 0) = 1 - A,

and Con = ( (v, Ai*),...,(v, A* )) is the standard (n, Mn) random code, as in Eq. (3.1). It is easy

to verify that C (A) satisfies Al for all 0 < A < 1, and all n. We further claim that there exists posi-
tive sequences {A,)°= I and (yJ,) -= I such that

(3.52)

and yn - 0; this implies (a).

The proof of this claim is in the spirit as the converse to Theorem 2, so we shall be brief. Let so
be any PJ-admissible jamming signal, and suppose A is such that

R < CAI I pJ (A) .

We can then bound the error probability above as follows:

Pr u (X) + +s*EArI

- Pr I u,(X) + ' e + s * E'I Z* 0) Pr { Z*= 0)

+ Pr ur (X) + X e + s e A, HI Z.-A = 1) Pr { Z.- = 1I

(a)
( A + Pr ( fP7/(I-A)vr+ i. + s E A-)
(b)
< X + 4 K(R,PA) exp {- nE(R,PX ) ,

19
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(3.54)

C*(X) =- I ),n I M M

'�(X) =- TI (I-V �P-�X) Z * IV 1�I I- i,

(3.51)

XPJ (C* (X,)) '< XAI I PJ
n (R) + Yn
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where

PX = PT/ (1 -A)(3.55)
Ne + Pj

The justification of these steps is as follows: (a) results when Eq. (3.51) is substituted into the preced-
ing equation, and the first conditional probability is bounded above by one; (b) follows from Eqs.
(3.53) and (3.29) and the fact tjhat s* satisfies PJ.

Now let {A[)X,7' I be any positive sequence such that A, < APIIAJ (R), A,, nAPIIAJ (R), and

K(R,P~n) exp -nE((RBP') -0.

Taking the supremum of Eq. (3.54) over all i and PJ-admissible s # and substituting An, we find that

XPJ (C*(A) < An + 4K(R,Pxn) exp (-nE(R,P n) }

- AA' I PJ (R) + 'n,, (3.56)

where y 'ny, I has the desired properties. This completes the proof of the forward part of Theorem 3.

(b): RAI I PJ C RAI I PJ .

We now prove that a positive sequence (,y,),I= I exists, which depends only on R, so that y, - 0 and

A (n) I AIPJ (R)y (3,57)

is satisfied for all AI-admissible (nM) random codes, where R (1/n) 10g2 M; this implies (b).

To prove this, let

C= { (U * D*i), (UMs DM) }

be any Al-admissible (nM) random code. Fix 8 > 0, and let 7)*,(8) be the P1-admissible jamming
sequence introduced in Eq. (3.33). As in part (b) of the proof of Theorem 2, it is easy to show that

A PJ (C ) > max Pr nu + -+71 +) (8) E Di (3.58)

> max Pr u ?+ n * + VPj10 + 8)7# E j }exp 

We now use Lemma 3 to lower bound the first expression on the right-hand side of Eq. (3.58):

max Pr I u r + 7 e + I/Pjl( 1 + 8 ) t |

I M_

> - I Pr J u r + X * + VPJ/I (1 + 8 ), #Dr }

> Pr I P (U*(C*)) < (4R - 2e - 1) (Ne + Pj/( 1 + 8)) } - y, (E), (3.59)

20
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where U*( ) is defined just prior to Lemma 3, and yn (E) is as defined in Eq. (3.11). Recall the defini-
tion of AAIIPJ(R) in Eq. (2.19); when we want to exhibit the dependence of this function on PI, we
use the notation AAIIPJ(R;Pj). Since C* satisfies Al, it is true that EP(U(C*)) < PT. Using this
and Chebysheff's inequality, we can easily show that

Pr I P(U*(C*)) < (4 R- 2e-1 ) (N + P/(I + 8)))

> XA I PJ(R -2E; PJ/(1 + 8)). (3.60)

Therefore, combining Eqs. (3.58), (3.59), and (3.60), we conclude that for all E > 0 and 8 > 0,

Apj (Cn) > AA I PJ (R - 2E; PJ/ ( 1 + 8))- exp | n | -2 Yn (e) (3.61)

Note that the right-hand of Eq. (3.61) depends on Cn* only through the rate R. Now choose I8n,}n 1,
both depending only on R and decreasing to zero slowly enough so that the last two terms in the right-
hand of Eq. (3.61) converge to zero. The right-hand expression then tends to AAIIPJ (R), as desired.
This completes the proof of the strong converse to Theorem 3.

Proof of Theorem 4:

(a): RAI I AJ RAI I AJ

For any nonnegative R, set Mn A_ L2nRJ . Fix E > 0 and define a sequence of AI-admissible
(n, MA,) random codes, say

C* (e) -(u I(e), A l), . . ., (u IA (eEA ) A (3.62)

where

ur7(e) _- -fv; (3.63)

P*0 (e) is a nonnegative random variable, independent of v I that satisfies E PO(e) < PT, and whose dis-

tribution will be given below; and Cn = (v yr, Ar) } is the standard (n, MA) random code. It is easy
to verify that Cn (E) satisfies Al for all 0 ( A < 1, and all n. We claim that there are positive
sequences (En) I and {yol)k= such that

XAJ (Cn(En) )< A IAJ (R) + yn , (3.64)

and y, - 0; this implies (a).

In proving this claim, we assume that Ne > 0; the proof if Ne = 0 is similar. We refer the reader
to the Theorem of Appendix C, and adopt the notation used there. A consequence of this theorem (cf.
Eq. (C4) ) is that if X0 has the distribution Eq. (C28b) and vo is as defined in Eq. (C28a), then

Pr I XO > Y + c } >,- (3.65)

holds for all nonnegative random variables Y that satisfy E Y < b.
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Now make the following substitutions:

PT
a =4R~e-) P b = P., C = Ne,

and define P* (E) in Eq. (3.63) by

P*#(E) =_ (4 R+E - I)X0

With these substitutions, it is easy to verify that

Vo = I - XA" I J (R + E) .

> From Eq. (3.65), it follows that if J# is any nonnegative random variable that satisfies EJ# PJ,
then

Pr { P*(E) < (4 R+e- 1) (Ne + J*) }• AA IAJ (R + E) . (3.66)

Let s* be any AJ-admissible jamming sequence and define J* = Is*12 (so that EJ# < = PJ)
and set =_ s#*/ when J# > 0 and s 0 otherwise (so that Is I < 1 a.s.). In the proof of
Theorem 1 (cf. Eq. (3.29)) we showed that if I I I 1 a.s. and P and J are positive constants, then

Pr I O/7)vr + 71 + J A Hr I P* (E) = P. J =

< 4K (R,P') exp (-nE (R,P') 1, (3.67)

for all n > 1, provided that

P'EE P > (4 R- 1).
Ne + J'

In particular, if

PRE
Ne P > (4R+ -1), (3.68)

then using Eq. (3.5b) we can further upper bound the right-hand side of Eq. (3.67) by

Bn (R, E) =4 K (R,4R+, - 1) exp {-nE (R,4R+E - 1)1. (3.69)

Note that B,, (R, E) -0 for all E > 0. Now define

f Bn (R, E) p > (4 R+e - 1) (Ne + J)
hn, (P,J) _ I, IR) ~ otherwise (3.70)

so that h,,(PJ) is an upper bound on Eq. (3.67) for all P, J, and n. Averaging this bound over the
distributions of CM(E) and JP, we find that

Pr I u T(e) + 71 + S A ) =Pr E / v j# + 71 e* + Ef CAr

,< E hn ( Po*(E), P)

= Bn (R,E) + (1 - Bn (R E)) Pr ( Po*(E) < ( 4R + -1) ( N + J*) }

< B,, (R,E) + AA/IAJ (R + E) , (3.71)
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where the last inequality follows from Eq. (3.66). Taking the supremum of Eq. (3.71) over all i and
AJ-admissible s', we obtain the bound

AAJ (Cn,(0)) < Bn (RB,) + AA/IAJ (R + E) , (3.72)

for all E > 0, n > 1. The claim Eq. (3.64) now follows by choosing {En I'= I to decrease to zero slowly
enough so that Bn (REn) - 0; since AAlIAJ(.) is continuous, the right-hand term then tends to
AAI I AJ (R), as desired. This completes the proof of the forward part of Theorem 4.

(b): RAI I AJ C RAI I AJ v

We now prove that there is a positive sequence In) n,= I that depends only on R, so that YIn - 0 and

AAJ (C*) X AA IAJ (R) - y,, (3.73)

is satisfied for any Al-admissible (n, M) random code C*, where R (1/n) g102 M; this implies (b).

Fix E > 0. As in part (a) of the proof of Theorem 4, we invoke the Theorem of Appendix C.
This Theorem implies that if Yo has the distribution Eq. (C28c), and vo is as defined in Eq. (C28a),
then

Pr ( X > Yo + c I < vo (3.74)

holds for all nonnegative random variables X that satisfy E X ( a. Making the substitution

a (4 R-21)' b = P., C = Ne, 

and defining

J(E) Yo,
p* _(4R-2E - 1) X

we obtain that

Vo= I - A' IAJ (B - 2E)

and

Prl P* < ( 4R f - 1- ) ( Ne + J*(E) XAJ IAJ (R - 2E) (3.75)

holds for all P* satisfying

EP* < P7 . (3.76)

Note that vJo0 *(E)* is Al-admissible for all E > 0.
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Let C* be any (n, M) random code. We may bound the error probability of this code below as
follows:

XAJ (C*) > max Pr{ u + 7 * + 7v %), E Dr)
I i i< M I I

1M
> - Y Pr ur+7 1 r+ ejJ¾ D, C

(a)
> Pr { P (U* (C)) < (4 R - 1 ) ( Ne + Jo(E) ) Yn- (E)
(b)

> A ( R - 1E ) Y -n (e) (3.77)

where ,, (e) is defined in Eq. (3.11). The justification of these steps is as follows: (a) results by apply-
ing Lemma 3; (b) follows from Eq. (3.75) and the fact that EP (U* (C*)) < PT. Now choose a
decreasing sequence of positive numbers, {fi-. 1, such that En - 0 slowly enough so that
yn (En) - 0. Substituting En into the right-hand side of Eq. (3.77), we obtain an expression that tends
to AAI I AJ (R) uniformly for all Al-admissible codes of rate R, as desired. This completes the proof of
the strong converse to Theorem 4.

4. DISCUSSION

Our results show that the asymptotic behavior of GAVCs is qualitatively different from that of
discrete AVC: whereas the latter always have a random coding capacity (cf. Blackwell et al. [1]), the
former generally have no capacity (except in the case Pi | PJ). This is a direct consequence of the
imposition of power constraints of the average type.

It remains to determine, if they exist, the corresponding A-capacities for the GAVC when the
transmitter is restricted to deterministic codes (i.e., those of the form Eq. (2.2)). For the discrete AVC,
deterministic coding capacities are known in many special cases. Ahlswede [14], using the average pro-
bability of error concept, has shown that the capacity of the discrete AVC is either equal to the random
coding capacity, or else it is zero.t This method apparently fails for the GAVC, owing to the presence
of a cost structure on the allowable channels and encoders.

The coding problems of Section 2 lend themselves to an alternative game theoretic formulation.
Corresponding to each GAVC, say A I B, there is a family of two-player, zero-sum games (cf. Blackwell
and Girshik [15]) defined as follows. Fix the blocklength n and the source rate R. The transmitter's
(resp. jammer's) allowable strategies consist of all (n, 2nR) random codes, C* (resp. all R' -valued ran-
dom vectors, s *) that satisfy the power constraint A (resp. B). The payoff when the jammer plays s
and the transmitter plays C* is the error probability A (C*,s*), defined in Eq. (2.8). The jammer
wants to maximize this probability; the transmitter wants to minimize it. Therefore, they seek stra-
tegies that attain the outer extrema in the following programs:

Transmitter's Program: vn- inf sup A (Cn*,s*), (4.1a)

Jammer's Program: vn, sup inf A (C*,s*), (4.1b)

where the extrema are taken over all allowable s * and Cn. An optimal strategy for the transmitter (resp.
jammer), if it exists, is one that attains the outer extrema in the transmitter's (resp. jammer's) pro-
gram. For any E > 0, e-optimal strategies, C*, and s>, are allowable strategies for which

sup A (C',,s*) -Vn + E (4.2)
S* 

icnf A (C*,,s,*) E n-f (4.3)
Cn

tAt present, no simple, general method is known for deciding between these two alternatives.
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where the extrema are taken over all allowable s'* and C*. It is always true that t, < _v; if va. = v,
then the game is said to have a value: P.,, v, = v- -

Equation (4.1a) defines a sequence (in n) of communications games. Basar and Wu [61 have
considered games of this type for a memoryless Gaussian source and for a different cost function, viz.,
mean-square distortion. For each n, they obtain the value of the game and characterize saddle-point
strategies for each player. In contrast, we can say little about each game in the sequence; we can, how-
ever, say a great deal about the asymptotic behavior of the sequence.

Implicit in the proofs of Theorems 1 to 4 is the following result: The sequences
_vn~nX Iand (ivnl).= I converge, and

lim a' = lim v, - A IB () (4.4)

holds for every R and every pair of constraints A I B. Thus the sequence of games has an "asymptotic
value" equal to AA IB (R). Furthermore, for all E > 0, there exists, for all sufficiently large n, E-

optimal strategies for both transmitter and jammer. (Such strategies for the transmitter are explicitly
constructed in the forward parts of the proofs in Section 3; jamming strategies are constructed in the
converse parts.)

Some authors further constrain the jammer to signals of the form

S =(Z 1711 w.. * Zn 71 n )4 5

where {71r)[Lt is i.i.d. N(0,1) and {zriLI is a sequence of random variables independent of ({') n)IL and
subject only to the average power constraint

E |-SZ*i |< Pi.

We call this constraint AJG, and use the notation GAVC A | AJG to refer to the channel with input
constraint A and jamming power constraint AJG. Since AJG is more restrictive than AJ, we must have
RA I AJG D RA IAJ. However, the jamming strategies constructed in the converses to Theorems 2 and 4
are all of the form Eq. (4.5), so that we must have RA I AJG = RA I Aj and consequently

AA I AJG (R) = AA I AJ (R). (4.6)

Thus our results extend to Gaussian jammers.

It is especially interesting that the achievable regions of Theorems 2 to 4 are not determined
solely by a simple optimization program involving mutual information, as is usually the case in informa-
tion theory. McEliece and Stark [81 have modeled the conflict between transmitter and jammer, when
coding is used, by a two-player, zero-sum game with mutual information as the payoff function. As an
example, they considered the channel that we have called the GAVC Al I AJ (for the special case
Ne = 0) and obtained the following results: Optimal transmission strategies for both players are i.i.d
Gaussian sequences of maximum power and of length n, and the value (or optimal payoff) is

2 1092 |1 + PT| .lg 2 I 1 pi I
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If the value of the game considered by McEliece-Stark is actually the capacity of the channel (the
authors do not assert that it is), then it carries the following interpretation: when n is large and

R < 2 10g 29 1 + PT

then AAJ (C) =0 is possible. In contrast, however, note that the e-optimal strategies for the game
Al I AJ in Eq. (4.1a) (cf. proof of Theorem 4) are not memoryless, and the error probability of any
positive rate code is bounded away from zero. It is of considerable interest that these two apparently
related games lead to such different results.

An explanation of this disparity between predictions of these two games lies in the fact that
mutual information takes on operational significance only when the block length is large compared to
the memory of the channel. The error probability formulation (i.e., Eq. (4.1a)) allows the jamming
memory to equal the blocklength, whereas the mutual information formulation always assumes that the
blocklength of the code is large compared to the jamming memory. Therefore the game involving
mutual information gives an a priori advantage to the transmitter, and it is not surprising that this
approach leads to much more optimistic results for the transmitter. We conclude that, at least for
GAVCs, one must be careful in attributing a coding significance to games having mutual information as
a payoff function.

From a practical viewpoint, the results of this report may be difficult to achieve or may lack
meaning for a real jammer. Like the pulse-jamming signals considered by Houston [161, our e-optimal
strategies demand high peak power when R is small; unlike Houston's, however, this peak power must
be sustained over the blocklength of the code. When n is large, the average power constraints (Al,
AJ) may fail to reflect all the physical constraints that would limit a practical system. An extreme
example: let n - +00, then the optimal jamming strategy for the case PI I AJ is of the form:
sir - N (O,Pj/p) for all time with probability p, and s, = 0 for all time with probability 1 - p. One may
approach a more realistic situation by considering multiple constraints on the jammer (as discussed in
Section 2).
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Appendix A

Proof of Lemma 1: To prove Lemma 1 (a), let s and ) # be as in the statement of the lemma, let co be
any unit vector in Rn' and let T be any orthogonal transformation on Rn that maps s into I s 1 , i.e., so
that

Ts= Islea.

Since minimum distance decoding is used (and distances are preserved by T), the following holds
almost surely:

Pr ( v* + n * +s E A, = Pr ( Tv* + T-q * + I s It w TAW}.

The sets I TA 1)M I remain minimum distance decoding sets for the codewords I Tv, /M= I and 71eI are
spherically symmetric, and so are unchanged by T. We conclude that

Pr{ v* + 7)' sC E PI= Prlv + we + Is !WE A-),

for all co in the ensemble of co *, from which Lemma I (a) immediately follows.

We now prove (b). Let the random variable m* be defined by

M*=--I 7 + lw* I

and let F,(m) be its distribution function. It is easy to verify that, conditioned on the occurrence
m* I = m, the expression 71 e + Io) * is uniformly distributed on the n-sphere of radius m; hence, its
conditional distribution does not depend on /. Therefore, define the quantity

y(m) -=Pr[ u*+ 77e* + lo) e A~l I17e + /f)I = m *(Al)

Since A *, is a set formed by the minimum distance rule, if m < ini then

u + m ( + I J e

implies

ut + | 71+ | E

and consequently, y( ) is monotone increasing. If for each m, Ft(m) is monotone decreasing as a
function of 1, then

Jy y(m) dFj (m) < fwo y (m) dF, (m)

which, according to Eq. (Al), is simply Lemma 1(b) disguised in different notation. It therefore only
remains to show that

Pr[ I e + I* 1 • m )< Pr Fr 1 'e+ 7@* I < m ). (A2)
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We shall, in fact, prove a stronger result that implies Eq. (A2):

Pr ( I 7^1e# + lw*)# 12 (i 2 I = w } (Pr{1 7 + l)* 12 < m22 = @ )

for all w. The latter inequality is an immediate consequence of the fact that the distribution of '* rr
decreases monotonically and symmetrically with distance from the origin. This completes the proof of
part (b), and Lemma 1.
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Proof of Lemma 2: Let (77, . be an i.i.d N (0,1 ) sequence. To prove Lemma 2 (a), note that 2 (a) is
trivially true when E > 0; therefore take E > 0. We apply Chernoff's bounding technique (e.g.
Wozencraft and Jacobs [BlI, Section 2.5) to obtain the following bounds:

Pr Ii2 1 + e < [ flE e -E/2 In (BI)

= exp ( 2(n ( +e) -f)

Pr |I 712 Ie -| <[ /1 e/ 2 ]n (B2)

= exp ( (n (1-f) + E) |.

We now make use of a well-known (e.g. Olmstead [B21) expansion for In ( I + x):

In ( + x) = x - 2 + X3 + rO (l+) dt, -1 < x < (B3)

Let us use Eq. (B3) to derive approximations to the expressions that appear in the exponents of Eqs.
(BI) and (B2); viz.,

In (I + E )-f =-E+3- t dt (B4)

f2 f3 2 2 1 2f1

2+3 2 3J
In (- ) + E=-2 --- J f dt (BS)2 3 01-t 15

_ 2 _ 3 _ E2

f 2 3

Substituting these approximations into Eqs. (BI) and (B2), we obtain

Pi | |-I 71 * i2-I |< e| (B36)

= Pr{ I I 1 + ei + Pr{ Il ( 1-

< 2 exp| 4 |2 1-3 E < exp| nE2 |

The last inequality holds for all n larger than no(E) = 6 In 2/E2 ( 1 E ), which depends only on E. This
completes the proof of Lemma 2(a).
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We now prove Lemma 2(b). For n = 1 and 2, by direct calculation we obtain

Pr { 71 12 > 1)} = 0.3174, (B7)

and

Pr X *2 > I= e-l = 0.3679, (B8)

so that Lemma 2(b) holds for these values of n. For n > 3, we proceed as follows:

|P I n I2 I (a) fo -(n-2)/2 -a1/2
Pr I-X 71~j i . I 2 a e da

2n/'2r 2--

(b) n(n-2)/2 e-n/2 ro (n-4)/2 e-a/2n t,2 1 e"' + sJ,:2 a ~ 1 2 e"' da
= (n-2/2r n +J 2 (n2)/21F I n-2

(c) I n-2 = Pr n-2 S Ace > I + E n s (B9)
where

n(n2)1 2e-nl2 - ffn a(n-4)/2 e-a 2 (BIO)

En (n-2)/2| no n2 (n-2)/2 r |a (BIO)

These steps are justified in the following way: (a) follows from the observation that I q7 j2 has the

standard chi-square density with n degrees of freedom (cf. [B3]); (b) follows from (a) by using
integration by parts; and (c) is merely a rearrangement of (b).

We now claim that en > 0 for all n > 3. If true, this together with Eq. (B9), (B7), and (B8)
would imply (b). To prove this claim, bound the integral in Eq. (B10) as follows:

fn a (n-4)/2 e-aI2 (a) nn12e-n12 In a I 0 - / ) Jn12 da

a 2(n-2)/2 d | n-2 (n-2)2r I n-2 e 2

r 2 ~ n~2 e~ 2 ,d
(b) n n12 e- n12 ,n ad a

'n-2)/2 r |n-2 Jn-2 a2

(c) n(n-2)12 e-n/2

2(n-2)/2 rI n

Equation (a) is simply a rearrangement of factors; (b) follows by observing that the bracketed expres-
sion is strictly less than one when a/n < I; (c) results when the integral in (b) is evaluated. This
completes the proof of the claim and Lemma 2.
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In this appendix, we study the following two-player, zero-sum game (cf. Blackwell and Girshik
[CI). Let a, b, and c be real numbers such that a, b > 0 and c > 0. Player I's (respectively, player
1I's) allowable strategies consist of all nonnegative, real-valued, random variables X (resp. Y) satisfying
EX < a (resp. EY < b ).* The payoff to player 1, when I plays X and 11 plays Y, is

Pr{X > Y + c). (Cl)

Player I wishes to maximize Eq. (Cl); player 11 wants to minimize it. Therefore, I and 11 seek stra-
tegies that attain the outer extrema in the programs

Program I: v= sup inf Pr( X > Y + c), (C2a)
X:EX -a Y:EY <b

Program 11: -= inf sup Pr I X > Y + c}. (C3a)
Y:EY < b X-EX < a

If a strategy exists that attains the outer extrema for Program I (resp. 11), it is called an optimal strategy
for player I (resp. 11). It is always true that v > P; if v= v, then the game is said to have a value,
vo= P= . A saddle-point solution to this game (if it exists) is a pair of allowable strategies, say
(XO, YO), such that

Pr{X > Yo + C) < Pr( XO > YO + c) < PrIXo > Y + c) (C4)

is satisfied for all allowable (X, Y). The existence of a saddle-point is a sufficient condition for a value
to exist; in this case we have

vo = v = v = Pr ( X0 > YO + c) (C5)

and thus X0 (resp. YO) is an optimal strategy for player I (resp. player 11).

In this appendix, we derive a unique saddle-point solution to Eq. (C3a). The special case
a = b = 1, c = 0, has been studied by Bell and Cover [C21 in connection with competitive investment,
and the special case c = 0 has been studied by McEliece and Rodemich [C31 as part of a study of
optimal jamming of uncoded MFSK. We construct the general solution of Eq. (C2a) from the known
solution in the special case c = 0. Without many of the complications that arise in the MFSK problem
studied in Ref. C3 this special case admits a proof that is much simpler than that given in Ref. C3; we
present this below.

Lemma 1: (Bell-Cover-McEliece-Rodemich) Consider the two-player, zero-sum game given by Eq.
(C3a) when c = 0. This game has a value vo and unique saddle-point strategies X0 - Fo and YO - Go
These are given, in the case a > b, byt

VO= 1 2 b (C6a)

Fo (x) = U[0,2a (X), (C6b)

Go(x) = {bI U 0 ,2a] (x) + fI- _b AO(X); (C6c)

* In this appendix, we abandon the convention, used earlier in the report, that distinguishes random variables with asterisks.

tThroughout this appendix we use the following notation: X - F means that the real-valued random variable X has distribution
function F. We denote by Ula.bl (X) the distribution function of a random variable that is uniformly distributed on the interval
[ab], and we denote by A, (x) the distribution function of the trivial random variable X -c.
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and, if a < b, are given by

V0 . a (C6d)

F0 (x) = IU0,2b] (X) + I I- _' a A(x) (C6e)

Go (x) = U10,2b] (X) . (C6f)

Remark: The proof given here is a generalization of Bell and Cover's [C21.

Proof. Let X - F and Y - G be any allowable strategies. Observe that

Pr {X > Y) = J G (x) dF(x) = 1-Jf F(x-) dG (x) . (C7)

First consider the case a > b. Let us show that (X 0, YO) satisfies Eq. (C4) when c = 0. Using the
obvious inequality U[Od] (X) < x / d when x > 0, we then obtain

Pr { X > Yo}=f o Go (x) dF(x)

= |1 - b J + b fo U10,2a] (X) dF (X)

< 1--| + -b- f200 x dF (x)

b( 1- b = (C8)

In much the same way, using the right-most equality in Eq. (C7), we can show

Pr {X0 > Y) > vO. (C9)

Since Pr { XO > Yo) = vo, we conclude that (X0 , YO) is a saddle-point and vo is the value of the game.

To complete the proof in the case a > b, it only remains to show the uniqueness of F0 and Go.
First consider Go. Let Yo - Go be any other random variable such that EYo ( b and

Pr{X ) Yo} I VO, (CIO)

for all admissible X. Substitution of

M1: X U[0,2a,] (X),

(2): X I '| 'I| Aa__ (X) + a- |a+p (X),

for all 0 < a,,3 < a, into Eq. (CIO) yields, respectively

(1): Go (2a) = 1 ,

(2) | f | Ga (a.-o + a I Go (a+G) < v 

for all O < aY,,G < a.
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We claim that (2) implies that there is a line, say 1(x), that passes through the point (a,vo) and is
such that

Go (x) < I(x), (C 11)

for all x > 0. To prove this claim, define*

Go' (a +,3) - v
A. max G < + (C12)

0 -<6 <a Pt

and let 13 attain the maxima. Let l(x) be the line through (avo) having slope A. We know that
Go (a) < vo = I(a) (proof: take a = # = 0 in (2)). By construction, 1(x) satisfies Eq. (ClI) when
x > a, and passes through the point (a+/3, Go (a + Wi)). Now if

Go (a-a) > I (a-a), (C13)

for some 0 < a < a, then a and /3 violate (2). Therefore, to avoid a contradiction, I (x) must satisfy
Eq. (Cli) for 0 < x < a as well, proving the claim.

We now show that Eq. (CII) implies that Go' Go. For any measurable function, say f (x), let
vf denote the Lebesgue volume of the region in R2 comprising the points
R= (xy) I 0 < x < 2a, f (x) < y < 1). By an elementary fact of probability theory and (1), we
know that

VG6 = EYo < b. (C14)

Equation (ClI) implies that VG6 >Ž Vi, and hence

vI < b. (C15)

Since 1(0)> Go (0) > 0, 1 (2a) > Go (2a) = I and l(a) = Po, RI is a triangular region and 1(0)
must be such that 0 < 1(0) • 2vo - 1. By elementary geometry, we can show that

a (- 1(0) )2 (C16)
=2 (vo - I(0) )

for all 0 < 1(0) < 2 vo-1. It is easy to show that Eq. (C16) is a strictly decreasing function of 1(0)
that attains a minimum value of PI - b when 1(0) = 2vo - I . Therefore the only line, I (x), that
passes through (a, vo) and that does not contradict Eq. (C15) satisfies 1(0) = 2vo - 1, and hence

W _ + I bA (C 17)
2a2 I al I 17

Comparing Eq. (C17) with Eq. (C6c), we see that I equals GO for all x such that
0 < x < 2a and 0 < I(x) < 1. It follows from Eq. (ClI), the nonnegativity of Y4 and YO, and (1),
that

Go (x) < Go (x)

for all real x. This implies that Go- Go, since if Gd (x) < Go (x) for some 0 < x < 2a , then

E Yd = V () > v(= b,

*The "max" in Eq. (C12) is justified because (Go (a +,)- vo)/f3 is upper semicontinuous, and the right-hand inequality because
this runction is bounded by vo/a (to prove: take ot = a in (2)).
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a contradiction. We conclude that, in the case a > b, Go is unique. The proof that Fo is unique, and
the proofs for the case a < b, are similar. This completes the proof of Lemma 1. 0

We now consider the game Eq. (C2a) when c > 0, and show that the solution in this case can be
constructed from the known solution for the case c = 0. To see this, note that any nonnegative
X - F that satisfies EX < a can be decomposed in the following way:

w.p. p

w.p. 1 - p (C18)

where p = 1 - F (c-) and W - L and Z - H are nonnegative real-valued random variables. The
distribution functions L and H are given by

IF(x)
L (x) = F (c-)

-0- < x < c

x Sac

if F (c-) > 0, otherwise L (x) = A0 (x); and

H (x) =
0 -00 < x < 0

F (x+c) - F (c-)
1-F (c-) x>0

if F (c-) < 1, otherwise H (x) = Ao (x) .

In terms of the new variables p, Z, and W, the cost function Eq. (CI) becomes

Pr (X > Y + c} = p PrIZ + c > Y+ c}

+ (1-p) PrI W > Y+c)

= p PrIZ > Y). (C19)

Clearly, W has no effect on the cost function Pr I X > Y
it. The latter choice is constrained by

+ c }, only our choice of p and Z influence

EX = (1-p) EW + p (c + EZ) < a

or

EZ < a -( 1- p) EW
p

so that the widest choice of Z is permitted when W _ 0 and

EZ _< a _ c- (p) .
P
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Using this decomposition, we can reformulate Eq. (C2a) in the following way:

Program I v= sup inf p Pr( Z > YI, (C20)
(p,Z):EZ (a (p) Y):EY < b

Program I:-v= inf sup p PrIZ > Y). (C20)
Y:EY Y< b (p,Z):EZ (a (p)

Games Eqs. (C2a) and (C20a) are equivalent in the following sense: If X0, po, and ZO are related
as in Eq. (C18), then ((po,Zo), YO} is a saddle-point for Eq. (C20a) if and only if(XO, YO) is a saddle-
point for Eq. (C2a); and, of course, the resulting values of both games are the same. Therefore, solv-
ing Eq. (C20a) is entirely equivalent to solving Eq. (C2a).

Using Eq. (C20a), we can derive the only candidate saddle-point for Eq. (C2a) in the following
way. Suppose that {(po,Zo), YO) is a saddle-point so that

p PrIz > YO) < po Pr(Zo > YO) < po Pr(Zo > Y) (C21)

for all admissible I (p,Z), Y). Then, in particular, we have

po Pr ( Z > Yo} < po Pr (Zo > Yo ) < Po Pr Zo > Y (C22)

for all (Z, Y) such that I (po,Z), Y} is allowable. Ignoring momentarily the trivial possibility that
po = 0, Eq. (C22) implies that (ZO, YO) must be a saddle-point of Eq. (C2a) with constants

a'= a (po) = -c, b'= b, c'= 0. (C23)
Po

Since Eq. (C6a) gives the unique solution to Eq. (C2a) when c = 0, we conclude that (ZO, YO) must
have the distributions Fo and Go obtained when the constants Eq. (C23) are substituted into-Eq. (C6a).
The corresponding value of this game, as a function of po, is

Po|1 2I d J ( (po) > b

VO (po) 2 ^ (C24)
PO a (Po) & (po) b.

2b

We now show that Eq. (C21) fixes a value for po as well. If (po, ZO), Yo} is a saddle-point for Eq.
(C20a), then the left-hand bound in Eq. (C21) implies that

VO = max VO (P)
0 < P < I

Using this, we may explicitly find the only possible saddle-point. The following facts will be useful:

FA CTS:

(1): The maxima of vo (p) over the range 0 < p K I is attained by

~I ' cZI7J a < C + I1 + I Ij7
Po-=2[ (C25)

and note that po < a / c when c > 0.
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(2): Define g (p) on the interval 0 < p < a / c by

g(p) =1- b _ bc
a (p) 2a2 (p)

Then g(po) = 0 ifO po < 1, and g (po) >0 if po = I .

(3): a (po) > b for all a, b > 0, and c > 0, where po is as defined in Eq. (C25).

Therefore, based on facts (1) and (3), Lemma 1, and the comments above, the only possible
saddle-point for the game Eq. (C20a) is po, Zo - Ho and Yo - Go where po is given in Eq. (C25) and

Ho (x) = U 0,20)po)] (X) I (C26a)

Go (x) = I() 1 U[0 ,2a (PO)I (X-C) + J 1 AO(x) . (C26b)

Remark Note that a > 0 implies that a (po) =_ a - c > 0, so that Eq. (C26b) is always well-
Po

defined.

Ho and Go are obtained by substituting po above into Eq. (C23), substituting the resulting con-
stants into Eq. (C6a), and taking Ho F0. The corresponding value of the game is

la [1 + b | 1-A/ 2 | | 2c b / X

2(a-c) a > C + bL

We have shown that [(po, ZO), YO) is the only candidate for a saddle-point for the game Eq.
(C20a); let us now verify that this is indeed a saddle-point. Let ( (p,Z), Y) be any admissible triple,
and suppose that Z - H and Y - G. Then

pPr(Z > Yol=pfo Go(x)dH(x)

I a(2b |+ dp +f J U[0,2a(po)] (X) dH (x)

I a (Po) J 2a 2 (p) f0 X dH(x)

< P 11 _ _b 1+ bpb (p)

= p1| 1 - 2b _ bc J + ba

ba
= P g (Po) + 22 (Po)
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From fact (2) it follows that pg (po) < Po g (Po) and therefore

ba
p Pr{IZ > YO) <Po g (Po)+ 2a2(p0 )

=P1 2(p) I = vo

The proof of

Po PrIZo > Y) > vo

for all allowable Y is similar to the proof of Lemma I and so is omitted.

We conclude that ((pOZO), 'YO) is the unique saddle-point for Eq. (C20a) and that vo is the
corresponding value. Recalling the equivalence between the games Eqs. (C20a) and (C2a) when
p, Z, and X are related by Eq. (C18) (cf. remarks following Eq. (C20a)), we have therefore proved the
following:

Theorem: Consider the two-player, zero-sum game given by Eq. (C2a). This game has a value vo and
unique saddle-point strategies XO - F0 and YO - Go. These are given in Lemma I for the case c = 0,
and for the case c > 0 by

|- 1+ I -, - :;i1 J a < C + 2 [1+ i C7

Vow = 1 2(ab I (C27a)1 2(a -c) a > c + -~1+.~ L+- I

Fo (x) = Po U[0,2a 7(po) (X) + ( 1-Po) AO (X) , (C27b)

G0 (X) = f U1 02 (po)] (X-c) + fI- b JA0 (x), (C27c)

where a (p) = a/p - c and

| c I l A_ a < c + 2b _[_ I To~~~~ ~~ = I I >h /4

Remark: Note that some of the quantities above are indeterminant when c = 0. Nevertheless the
saddle-point strategies and the value in Eq. (C27a) tend continuously to those of Lemma I as c - 0.
To see this, fix a > 0 and b > 0 and denote by vo (c), XO (c), and YO (c), the value and saddle-
points for the game Eq. (C2a) with parameters a, b, and c. As c -0, we have by elementary expan-
sion 1 +7 I + - -c-- + oc

A/;h b 2b2

and therefore

a 1I+ b I- 1 | 11= 2a + o(c)
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We also have, trivially, ,

C+ 1 + = b + o (c).

Frr

Therefore, we conclude that as c - 0, Fk

vO (c) - vO (0) 

XO (c) - X0 (0) (in law),

YO (c) - YO (0) (in law),

as claimed.
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